
In the last issue, I was talking
about common uses for type-

casting, including dissecting
pointers. Before the advent of
Delphi, and indeed since then for
those who haven’t come across
the better alternatives, users of
Borland’s Pascal-based products
dealt with Windows messages just
as with any other third generation
language.

All Windows messages were sent
in a particular fixed message struc-
ture (a TMessage record, usually
called Message) regardless of the
format of the additional informa-
tion they were intended to convey.

The TMessage structure is defined
in the Component Writer’s Guide
help file and principally holds the
message number (Msg), a word
parameter (WParam), a double-word
parameter (LParam) and a result
field (Result). Given the diversity of
messages available and the infor-
mation that needs to be imparted,
two number fields are not sufficient
to provide it in readily accessible
format. Instead, you need to use
typecasting to get the right bits
out. Moreover, since there are so
many messages, you need to have
a photographic memory, or keep
referring to some reference, to
work out which bits go where. And
in addition, in Win32, the Word
and Longint change to two Longints
with information packaged
differently. What a mess.

Fortunately for us, Microsoft
took the initiative and introduced
message crackers into the
Windows SDK. These were origi-
nally implemented as C macros and
surface in Delphi as alternative
message record structures, to be
found in the Messages unit. There is
a record type for each message.
The point of message crackers is to
provide easier access to the infor-
mation being sent with a message
and to allow platform-independent
message-handling code to be
written – instead of your code
changing between platforms, the

Typecasting Explained: Part 2
by Brian Long

definitions of the message cracker
records change. Let’s look at an
example, the wm_GetMinMaxInfo
message. We can use this message,
via a message handler for example,
to modify the minimum and
maximum size of a form, or any
other window for that matter.

The information passed along
with the message is a record of
type TMinMaxInfo, which has five
TPoint fields, where a TPoint is a
record with two Integer fields,
which makes a total of ten bytes.
Obviously that’s not going to fit
into a TMessage record, so the
address of this record is passed in
the Longint field. To access the
fields of the record, we need to
apply a variable typecast to
Message.LParam to make it look like
a pointer to a TMinMaxInfo record,
or a PMinMaxInfo, and then de-
reference the resultant pointer. So
we use:
PMinMaxInfo(Message.LParam)^.ptMaxSize :=

 PointVariable;

This typecasting of message fields
used to be very common. With
message crackers we define
Message to be a TWMGetMinMaxInfo
record rather than a TMessage, and
use:
Message.MinMaxInfo^.ptMaxSize :=

 PointVariable;

Unsafe And Safe
Typecasting Of Objects
Having smartly avoided objects all
this time, let’s turn and face them
head-on. You have probably
noticed that all the event handlers
for any components on a form are
implemented as methods of that
form. This is called delegation.

The objects are said to delegate
the handling of the events to an-
other object. Since there is already
a new form class definition being
built up by the form designer, with
data fields for each added compo-
nent, the form is the component
that gets to hold all the event
handlers.

This is very much unlike C++ and
previous Pascal models, where an
event handler for an object would
live in that object’s class definition
(after having derived a new class to
define the event handler to be part
of). There are two clear advantages
to the delegation model. Firstly, if
there are less class definitions
around, there is less code required
for a program to work. But more
importantly, if most objects are
delegating their event handling to
the form, we can share event han-
dlers between objects. One event
handler can be triggered from
more than one place, perhaps
more than one object. This begs
the question of “How do we know
which object triggered it?” That’s
what the Sender parameter is for in
practically all of these event
handlers the VCL provides.

Take an example where there are
two buttons side by side on a form,
Button1 and Button2. Double click
the first button to generate an
OnClick handler for it. Now go back
to the form designer (press F12),
select the other button (right
cursor key) and go to the Events
page of the Object Inspector (press
F11, Ctrl-Tab). Drop down the list
of candidate event handlers for the
OnClick event (Alt-down cursor
key) and choose the event handler
just generated, Button1Click. That
has associated the one event
handler with an event in two
distinct components.

Okay, now suppose we wish to
put some code in the handler to
change the caption of the button
which caused the event to trigger.
That’s where Sender comes in.
Sender is declared as TObject, a sort
of lowest common denominator
class, and because a TObject does
not have anything in it called
Caption, the compiler will reject
something like this, despite the fact
that we know Sender will be a
TButton and so the sentiment is
valid:
Sender.Caption := ’Clicked’;

24 The Delphi Magazine Issue 4

Instead, we need to take account of
the fact that Pascal is strongly
typed and suggest that the
compiler considers Sender to be
not of type TObject, but of type
TButton. We can use a variable
typecast to achieve this:

TButton(Sender).Caption :=
 ’Clicked’;

and indeed this works. You may
recall one of the rules for a variable
typecast was that the subject of the
typecast was the same size in bytes
as the target type.

The reason this typecast works,
even though the TObject class will
be rather smaller than the TButton
class, is that all these declarations
like Sender of type TObject, Button1
of type TButton etc, are declara-
tions of object references not
actual objects. An object reference
is a pointer to an object, but with-
out the complications of standard
pointer syntax. This means objects
are allocated on the heap by
default, which is the largest mem-
ory store under Windows, and
means they can be de-referenced
easily. However, it does lead to a
confusing inconsistency in the
language which trips people up on
a regular basis. But at any rate, any
object reference will be the same
size as any other, since all pointers
are the same size: four bytes. This
can lead to problems.

Let’s continue the example. Add
a main menu onto the form and
define an item on the menu bar
with a caption of Menu and a drop
down item from it captioned Click.
Select the Click menu item. Go to
the Events page of the Object
Inspector, drop down the list of
candidate OnClick event handlers
and pick Button1Click. Now run the
program and choose the menu
item. Boom! The debris is shown in
Figure 1 in the shape of a GPF.

The GPF is caused by us telling
the compiler to treat the object
that caused the event as a button,
when in fact it was a menu item.
The trouble is, we might not even
get a GPF. We only got one here
because at some point an attempt
was made to access memory which
wasn’t ours to access. We may just

➤ Figure 1 So Delphi can do what the competition does so well...

get some innocent data elsewhere
being written over, causing
untraceable errors later in the
lifetime of the program.

Unfortunately, the compiler
can’t warn us of the impending dis-
aster because one pointer looks
much like another to it. But there is
a way we can avoid the problem. If
we call this current form of variable
typecasting unsafe in the context of
objects, then we can also do safe
typecasting using a different
syntax, taking advantage of the
reserved words that use run-time
type information. A more appropri-
ate version of the above typecast
would be:

(Sender as TButton).Caption :=
 ’Clicked’;

which only performs a typecast if
the type of Sender is TButton or any
object derived from type TButton. If
Sender is some other type, such as
a TMenuItem, we still get an excep-
tion, but we will always get the
exception, and the exception is an
EInvalidCast exception which can
be trapped for. Of course, it would
be better to not get an exception at
all and so we can employ the is
keyword, as shown in Listing 1. The
typecast is then only performed if
the preceding test evaluates to
True, ie it is going to work.

unit Typecstu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, Menus, StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 Button2: TButton;
 MainMenu1: TMainMenu;
 Menu1: TMenuItem;
 Item1: TMenuItem;
 procedure GenericClick(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.GenericClick(Sender: TObject);
begin
 {TButton(Sender).Caption := ’Clicked’;}
 if Sender is TButton then
 (Sender as TButton).Caption := ’Clicked’;
 if Sender is TMenuItem then
 (Sender as TMenuItem).Enabled := False;
 MessageBeep($FFFF);
end;
end.

➤ Listing 1

November 1995 The Delphi Magazine 25

Epilogue: Is Pascal Less
Flexible Than Assembler?
Who knew that Delphi, like Borland
Pascal before it and Turbo Pascal
before that, supports direct entry
of inline assembly instructions, in
addition to direct entry of machine
code hex bytes?

It’s alright. You can come out
from under the table now. I’ll be
administering it in small, carefully
measured doses...

unit Basmu;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls,Forms, Dialogs, ExtCtrls, StdCtrls;
type
 TBIOSCounterForm = class(TForm)
 Label1: TLabel;
 Label2: TLabel;
 procedure FormActivate(Sender: TObject);
 private
 { Stores a copy of the BIOS timer counter }
 FBIOSCounter: Longint;
 { Updates FBIOSCounter }
 function GetBIOSCounter: Longint;
 public
 { Simple property to set up and return FBIOSCounter }
 property BIOSCounter: Longint read GetBIOSCounter;
 end;
var BIOSCounterForm: TBIOSCounterForm;

implementation
{$R *.DFM}
const
 { You really shouldn’t do this... }
 BIOSArea = $40;
 BIOSCounterLo = $6C;
 BIOSCounterHi = $6E;
{$define VERSION1}

{$ifdef VERSION1}
function TBIOSCounterForm.GetBIOSCounter: Longint;
begin
 FBIOSCounter := MemL[BIOSArea:BIOSCounterLo];
 Result := FBIOSCounter;
end;
{$endif}

{$ifdef VERSION2}
function TBIOSCounterForm.GetBIOSCounter: Longint;
begin
 LongRec(FBIOSCounter).Lo :=
 MemW[BIOSArea:BIOSCounterLo];
 LongRec(FBIOSCounter).Hi :=
 MemW[BIOSArea:BIOSCounterHi];
 Result := FBIOSCounter;
end;
{$endif}

{$ifdef VERSION3}
function TBIOSCounterForm.GetBIOSCounter: Longint;
begin
 WordRec(LongRec(FBIOSCounter).Lo).Lo :=
 Mem[BIOSArea:BIOSCounterLo];
 WordRec(LongRec(FBIOSCounter).Lo).Hi :=
 Mem[BIOSArea:Succ(BIOSCounterLo)];
 WordRec(LongRec(FBIOSCounter).Hi).Lo :=
 Mem[BIOSArea:BIOSCounterHi];
 WordRec(LongRec(FBIOSCounter).Hi).Hi :=
 Mem[BIOSArea:Succ(BIOSCounterHi)];
 Result := FBIOSCounter;
end;
{$endif}

{$ifdef VERSION4}
function TBIOSCounterForm.GetBIOSCounter:
 Longint; assembler;

asm
 mov ax, BIOSArea
 mov es, ax
 mov di, BIOSCounterLo
{ Longint’s are returned in DX:AX }
{ AX is the low result word }
 mov ax, es:[di]
 mov di, BIOSCounterHi
{ DX is the high result word }
 mov dx, es:[di]
 les di, Self
{ Having loaded the reference to this form in ES:DI, we
 need to access its FBIOSCounter field. We then need to
 store AX in its low word. After that we get the high
 BIOS timer counter word and do the same thing but
 store AX in the high word. An example of a statement
 that does this is:
 mov TBIOSCounterForm(es:[di]).FBIOSCounter.Word[0], ax
 We can consider this split into two parts. The part
 that references the field of interest, i.e. structured
 variable access, and the part that accesses the
 relevant word of the field, i.e. unstructured variable
 access. The structured variable access can be written
 in these ways:
 TBIOSCounterForm(es:[di]).FBIOSCounter
 TBIOSCounterForm[es:di].FBIOSCounter
 TBIOSCounterForm([es:di]).FBIOSCounter
 (TBIOSCounterForm ptr es:[di]).FBIOSCounter
 (TBIOSCounterForm ptr [es:di]).FBIOSCounter
 ([TBIOSCounterForm ptr es:di]).FBIOSCounter
 es:TBIOSCounterForm[di].FBIOSCounter
 es:TBIOSCounterForm([di]).FBIOSCounter
 es:[di].TBIOSCounterForm.FBIOSCounter
 [es:di].TBIOSCounterForm.FBIOSCounter
 The unstructured variable access can be written in
 many different ways (the *’d formats are valid if you
 are accessing only the first bytes):
 LongRec(structured_part).Lo
 * Word(structured_part)
 * structured_part.Word
 structured_part.Word.0
 structured_part.Word[0]
 * word ptr structured_part
 * word ptr [structured_part]
 word ptr structured_part + 0
 word ptr [structured_part] + 0
 word ptr [structured_part + 0]
 So, to get to the low and high word of this field the
 following two lines are valid possibilities: }

 mov word ptr [(TBIOSCounterForm ptr
 es:[di]).FBIOSCounter] + 0, ax
 mov es:[di].TBIOSCounterForm.FBIOSCounter.Word.2, dx
end;
{$endif}

procedure TBIOSCounterForm.FormActivate(Sender: TObject);
begin
 repeat
 Application.ProcessMessages;
 Label1.Caption := IntToStr(BIOSCounter);
 until Application.Terminated;
end;
end.

Listing 2 shows an application
with a reasonably simple main
form. When the main form
activates, its OnActivate event
handler kicks in and starts a
Windows-friendly loop that only
finishes when the user closes the
program down. Each time round
the loop it updates a label on the
form with the new value of a
property of the form called
BIOSCounter. BIOSCounter, when
read, should return the current
value of the PC BIOS timer tick

counter. This double word value,
stored in the lower recesses of DOS
memory, is incremented every
time the BIOS timer ticks, ie every
55ms.

The BIOSCounter property is a
read-only property, which calls the
GetBIOSCounter function when it is
read. There are four candidate
implementations of GetBIOSCounter
in the listing that we will look at.
Each one stores the current value,
read directly from the BIOS Data
Area, in a private data field of the

➤ Listing 2

26 The Delphi Magazine Issue 4

form (FBIOSCounter) before
returning the value.

The four GetBIOSCounters have
conditional compilation directives
around them. None of them will
compile until the appropriate
symbol for them is defined. You’ll
notice that just before the first one,
I have defined the first symbol with
another compiler directive to
enable the first version to compile.
To get each successive version to
compile, just change the {$define
VERSION1} statement to define the
relevant symbol instead.

There are three issues that we
need to understand before we can
look at the implementations of the
methods. Firstly, where is the BIOS
data segment? Secondly, where is
it when running in protected
mode? And lastly, how do we read
a value from memory anyway?

To answer the first and second
questions, the BIOS Data Area lives
at segment number $40 when
running under real mode, in DOS,
and the BIOS counter takes up the
two words starting at offset $6C and
$6E in that segment. In protected
mode, we don’t have segments, we
have selectors instead. A selector
has no indication of what real
segment it represents and so
normally we have to use special
interrupt routines or Windows API
calls to generate a selector for a
particular segment.

However, under Windows 3.x,
due to what we can consider to be
more than just a happy coinci-
dence, selector number $40 just so
happens to represent segment $40.
Microsoft programmed this in
because of the amount of code
under DOS that referred to the
BIOS Data Area, in order to act as a
safety net for those developers
who forgot to rewrite the relevant
bits of code. I have seen this
referred to as the “save your butt”
selector. You should not use this
selector; you cannot rely on its
value in any particular version of
Windows. I wouldn’t use it, except
for the brevity factor in this code
listing. Honestly.

To dispense with the third
question, we can read directly from
memory using the scarcely
documented Mem, MemW and MemL

pseudo-arrays. These take a selec-
tor and offset as an index and re-
turn the Byte, Word or Longint
respectively that is stored at that
address. The first version of the
routine is fairly straightforward.
There is no typecast, simply an as-
signment of the double-word value
read using MemL to the data field.

The second one is more interest-
ing. The two individual words are
read one at a time, using MemW, and
assigned to the relevant word of
FBIOSCounter using variable
typecasts. The third version is
more involved. Each byte is read in
turn, using Mem, and assigned to the
relevant byte in the data field using
nested variable typecasts. We
access each word using a LongRec
typecast, and then access each
byte of the returned word using a
WordRec typecast.

The last one is where things start
to get messy. It is implemented
entirely in assembler code. To
achieve what we want in assem-
bler, after reading the values from
the BIOS Data Area we need to find
a pointer to the current object (ie
Self) and load it into appropriate
registers, eg ES and DI. Then we
typecast this generic register
pointer into a pointer to the rele-
vant class type, TBIOSCounterForm,
so we can de-reference the
FBIOSCounter data field. That’s one
typecast, and a variable one at that.
That gives us access to the double
word data field. The trouble is, the
standard CPU registers are 16-bits
wide and the current Delphi built-
in assembler certainly only under-
stands 16-bit assembly operations
directly (although you can fool it).
So given the structured typecast to
give us the data field, we now need
to apply a second typecast to get
access to the individual words of
the data field.

Without going into too much
detail, the comments in the listing
point out that there are a massive
ten (count them) ways to express
the first typecast to get us to the

data field. And then there are
another ten ways to access a
specific word. Given that we need
one from each set of typecasts to
get access to either word in the
data field that gives a colossal one
hundred combinations of valid
typecasts that are understood by
the assembler to achieve the end
result. I need to sit down after all
that....

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

A note from the Editor...
For more information on allocat-
ing and using selectors, and also
on a wide range of subjects includ-
ing the Pascal expression parser,
typecasting, direct memory access
etc, see The Borland Pascal Prob-
lem Solver by Brian Long, publish-
ed in 1994 by Addison-Wesley,
ISBN 0-201-59383-1. Admittedly, it
was written with Borland Pascal in
mind, but many of the concepts
and ideas transfer readily across. I
can recommend it.

➤ Figure 2
Assembly
in Delphi,
smooth as
clockwork

November 1995 The Delphi Magazine 27

	Unsafe and Safe Typecasting of Objects
	Epilogue: Is Pascal Less Flexible Than Assembler?

